skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Junliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 11, 2026
  2. Perverse-Hodge complexes are objects in the derived category of coherentsheaves obtained from Hodge modules associated with Saito's decompositiontheorem. We study perverse-Hodge complexes for Lagrangian fibrations andpropose a symmetry between them. This conjectural symmetry categorifies the"Perverse = Hodge" identity of the authors and specializes to Matsushita'stheorem on the higher direct images of the structure sheaf. We verify ourconjecture in several cases by making connections with variations of Hodgestructures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras. 
    more » « less