Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 11, 2026
-
Perverse-Hodge complexes are objects in the derived category of coherentsheaves obtained from Hodge modules associated with Saito's decompositiontheorem. We study perverse-Hodge complexes for Lagrangian fibrations andpropose a symmetry between them. This conjectural symmetry categorifies the"Perverse = Hodge" identity of the authors and specializes to Matsushita'stheorem on the higher direct images of the structure sheaf. We verify ourconjecture in several cases by making connections with variations of Hodgestructures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.more » « less
An official website of the United States government
